SYNTHESIS OF N,N'-DIGLUCOSYLATED BENZIMIDAZOL-2-ONE VIA AN UNEXPECTED REARRANGEMENT OF BENZODIAZEPINE DERIVATIVE

Brahim Lakhrissi Laboratoire de Chimie des Agroressources, Université Ibn Tofail, Kenitra, Maroc. Mohamed Massoui Laboratoire de Chimie des Agroressources, Universite Ibn Tofaïl, Kénitra, Maroc. El Mokhtar Essassi Laboratoire de Chimie des Agroressources, Université Ibn Tofaïl, Kenitra, Maroc. Vincent Lequart Laboratoire de la Barrière Hémato Encéphalique, Antenne de Béthune, IUT de Bethune, Université d'Artois, France. Nicolas Joly Laboratoire de la Barrière Hemato Encéphalique, Antenne de Béthune, IUT de Béthune, Université d'Artois, France. Gérard Goethals Laboratoire des Glucides, Université de Picardie Jules Verne, Amiens, France. Patrick Martin* Laboratoire de la Barrière Hémato Encephalique, Antenne de Béthune, IUT de Béthune, Université d'Artois, France.

e-mail: patrick.martin@univ-artois.fr, fax: 00-33-(0) 3-21-63-02-94

Abstract

Reaction of 1,5-benzodiazepin-2,4-dione with 3-O-substituted-5,6-anhydro-1,2-isopropylidene- α -D-glucofuranose gave the unexpected N,N'-di-glucofuranosyl benzimidazol-2-one by a novel rearrangement and ring closure reaction. A mechanism is proposed.

Keywords

1,5-benzodiazepin-2,4-dione / N-glucosylation / rearrangement / benzimidazol-2-one / mechanism

Introduction

Benzodiazepinic compounds such as Clobazam I (scheme 1) are used as anxiolitics, anticonvulsivants, myorelaxants and sedatives.(1-6) Similar biological activities have also been observed for 7-chloro-1,5-di-N-allyl-1,5-benzodiazepin-2,4dione II (scheme 1).(7-8)

In order to increase the water solubility of 1.4-benzodiazepine analogues, we have previously linked hydrophilic sugar residues to various hydrophobic 1,4-benzodiazepin-2,5-diones and 1,4-benzodiazepin-5,11-diones. (9-10) The aim of this study was to synthesize glucosyl-1,5-benzodiazepin-2,4-diones of the type III (scheme 1), in which both N-1 and N-5 are attached to either a partially protected glucofuranosyl moiety, as in 3, or a 6-deoxy-D-glucopyranos-6-yl group as in 4 (scheme 2).

Scheme 2: Reaction pathway followed for the synthesis of 1,5-N,N'-bis-(6-deoxy-D-glucopyranos-6-yl)-benzodiazepin-2,4-dione 4.

Results and Discussion

The starting material, 1,5-benzodiazepin-2,4-dione (1) was prepared by condensing malonic acid with 1,2-diaminobenzene in HCl. (11-13)

Refluxing of 1.5-benzodiazepin-2.4-dione 1 with 2a (14) for 2 hours in the presence of K_2CO_3 in 4:1 toluene-DMSO gave the expected N , N'-bis-substituted derivative 3 (73% yield). It is of note that this derivative 3 was the only product detected in the reaction mixture when either a molar deficiency or an excess of 2a was used.

Subsequent deprotection of 3 with 9:1 CF₃COOH-H₂O at room temperature, (15) gave the corresponding N, N'-bis-(6-

deoxy-D-glucopyranos-6-yl)-1,5-benzodiazepin-2,4-dione (4) in high yield (96%).

With the aim of modulating the hydrophilic-lipophilic balance, 2a was subsequently replaced by the slightly more lipophilic homologue 2b in which the 3-OH group is methylated. Under comparable reaction conditions, substitution of the methylated glucosyl units also occurred on each nitrogen atoms, after 2 hours, but gave exclusively the unexpected product 5 (51% yield), which was [1-N-(6-deoxy-5-O-acetyl-1,2-O-isopropylidene-3-O-methyl-a-D-glucofuranos-6-yl)-3-N-6deoxy-1,2-O-isopropylidene-3-O-methyl- α -D-glucofuranos-6-yl]-1,3-benzimidazol-2-one (5) (scheme 3).

Scheme 3: Reaction pathway for the synthesis of unexpexted N,N'-bis-(6-deoxy-3-O-methyl-D-glucopyranos-6-yl)benzimidazolone 6.

Thus in addition to N,N'-bis-substitution, a rearrangement also occurred resulting in ring contraction from a 1,5-diazepin-2,4-dione to 1,3-imidazol-2-one system along with simultaneous acetylation on C₅-OH of one of the glucose units. A plausible mechanism is presented in scheme 4.

Scheme 4: Mechanism leading to the rearranged product 5.

It would seem reasonable that the first step in the reaction would involve formation of product A, which is analogous to compound 3. The next step in the proposed mechanism is the intramolecular attack of the OH group at C_5 of the sugar on the carbonyl of the diazepin-2,4-dione to give product B. By comparison, the propensity for such an attack to take place in the analogous product 3 is perhaps diminished due to intramolecular hydrogen bonding between the OH groups at C3 and C_5 , thus reducing the nucleophilicity of the OH group at C_5 . In the later steps, the cleavage of the N₁-C₂ bond give the intermediate C, which possesses a NH group easily deprotonated by basic catalyst (K_2CO_3) and attacking on the remaining carbonyl to give the tricyclic intermediate D. Lastly, cleavage of the C_6 -C₇ bond of the putative oxazepine ring, would give the product 5. It is notable that this rearrangement is different from those already observed with 1,4- and 1,5benzodiazepines,(16-18) but had already been observed during the condensation of 1,5-benzodiazepin-2,4-diones 1 with other 3-O-alkyl- α -D-glucofuranose, such as 3-O-allyl or 3-O-octyl derivatives.(14) In contrast, no evidence of rearrangement reactions was observed in the reaction of benzodiazepine 1 with monosaccharide 2a. Subsequent deprotection of 5 was achieved in CF₃COOH-H₂O to give benzimidazolone 6 in 81% overall yield.

Experimental Section

General.

Melting points were determined on an automatic electrothermal apparatus, and are uncorrected. Optical rotations, for solutions in CHCl₁ or MeOH, were measured with a digital polarimeter JASCO model DIP-370, using a sodium lamp at 25 °C. NMR spectra were recorded with a Bruker WB-300 instrument for solutions in CDCl3 or Me₂SO-d₆ (internal Me4Si). Elemental analyses were performed by the IUT de Béthune, Département de Chimie (Béthune, France). Analytical TLC were performed on Merck aluminium backed silica gel (Silica Gel F254). Column chromatography was performed on silica gel (60 mesh, Matrex) by elution with hexane-acetone mixture (in each case the ratio of silica gel to product mixture to be purified, was 30:1).

5,6-anhydro-1,2-O-isopropylidene- α -D-glucofuranose (2a).

Glucosidic precursor was synthesized according to a method described elsewhere.(14) The product was isolated as a white solid with 96% yield, mp 130-132°C, $[\alpha]_0^{25}$ -9.3° (c 1.4, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.88 (d, 1H, J₁₂ = 3.6 Hz, H-1), 4.43 (d, 1H, $J_{1,2}$ = 3.6 Hz, $J_{2,3}$ = 0.0 Hz, H-2), 4.18 (d, 1H, $J_{3,4}$ = 2.3 Hz, H-3), 3.82 (dd, 1H, $J_{4,5}$ = 5.3 Hz, H-4), 3.27 (m, 1H, $J_{5,6a}$ = 4.2 Hz, $J_{5,6b}$ = 2.7 Hz, H-5), 2.88 (dd, 1H, $J_{6a,6b}$ = 4.8 Hz, H-6a), 2.76 (dd, 1H, H-6b), 1.37, 1.22 (2s, 6H, CH_{3iso}); ¹³C NMR (75 MHz, CDCl₃): δ 110.4 (C_{iso}), 104.0 (C-1), 84.1 (C-2), 79.2 (C-4), 74.0 (C-3), 48.5 (C-5), 45.3 (C-6), 25.7, 25.1 (CH_{3isn}).

3 -O-methyl-5,6-anhydro-1,2-O-isopropylidene- α -D-glucofuranose (2b).

The glucosidic precursor was synthesized according to the literature.(19) The product was isolated as an oil with 95% yield, $[\alpha]_D^{25}$ -65.0° (c 1.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.88 (d, 1H, J_{1,2} = 3.6 Hz, H-1), 4.43 (d, 1H, J_{1,2} = 3.6 Hz, J_{2,3} = 0.0 Hz, H-2), 4.18 (d, 1H, J_{3.4} = 2.5 Hz, H-3), 3.82 (dd, 1H, J_{4.5} = 9.0 Hz, H-4), 3.41 (s, 3H, OCH₃), 3.04 (m, 1H, J_{5.6a}= 5.2 Hz, H-5), 2.88 (dd, 1H, $J_{6a,6b}$ = 5.1 Hz, H-6a), 2.76 (dd, 1H, H-6b), 1.42, 1.32 (2s, 6H, CH_{3is0}); ¹³C NMR (75 MHz, CDCl₃): δ 110.2 (C_{ito}), 104.1 (C-1), 84.1 (C-2), 81.5 (C-3), 79.6 (C-4), 48.1 (C-5), 45.4 (C-6), 58.2 (OCH₃), 26.5, 25.7 (CH_{3iso}) .

General procedure for the diglucosylation of 1,5-benzodiazepin-2,4-dione (1).

The general procedure for substitution step consisted first in the addition of α -D-glucofuranosyl derivative 2a or 2b (8.00 mmol) to a solution of the 1,5-benzodiazepin-2,4-dione 1 (0.74g, 4.20 mmol) and K_2CO_3 (1.65g, 10.40 mmol) in 4:1 toluene-DMSO. The solution was then heated to 110°C for 2 hours and the reaction progress was controlled by TLC (3:2 hexane-ether). After cooling, the mixture was filtered and the resulting filtrate was neutralized with a saturated aqueous solution of NH₁Cl and extracted with toluene. The organic phase was separated, washed with a saturated aqueous solution of NaCl, dried (Na₂SO₄) and concentrated under reduced pressure. The crude product was chromatographed on silica gel using 7:3 hexane-acetone to give 3 and 5 in 73 and 51%, respectively.

1,5-N,N'-bis-(6-deoxy-1,2-O-isopropylidene-α-D-glucopyranos-6-yl)-benzodiazepin-2,4-dione (3).

This compound was obtained as white crystals, mp 153-155°C, $[\alpha]_D^{27}$ -11.5° (c 0.6, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_{glucose} 5.86 (d, 2H, J_{1,2} = 3.6 Hz, H-1), 4.44 (2d, 2H, J_{1,2} = 3.6 Hz, J_{2,3} = 0.0 Hz, H-2), 4.30, 4.20 (2d, 2H, J_{3,4} = 2.2 Hz, H-3), 4.13 (m, 2H, H-5), 4.05 (2dd, 2H, J_{4.5} = 8.3 Hz, H-4), 3.90–3.61 (m, 4H, J_{6a.6b} = 12.4 Hz, H-6), 1.30–1.15 (4s, 12H, CH_{3iso}), $\delta_{benzodizzoine}$ 7.18–7.00 (m, 4H, H_{arom}), 3.30–3.20 (m, 1H, H_{Bzd}); ¹³C NMR (75 MHz, CDCl₃): δ_{glucose} 111.6, 111.4 (C_{iso}), 105.0 (C-1), 84.9 (C-2), 81.5, 81.2 (C-4), 74.5, 74.2 (C-3), 67.2, 66.6 (C-5), 52.8, 50.1 (C-6), 26.4 (CH_{3iso}), δ_{benzodiazepine} 167.2, 166.4 (C-2, C-4), 137.7, 133.9 (C-10, C-11), 127.3, 127.0 (C-7, C-8), 124.1, 123.8 (C-6, C-9), 44.5 (C- $3).$

Anal. Calcd for C₂₇H₃₆N₂O₁₁ (564): C, 57.44; H, 6.42; N, 4.96. Found: C, 57.25; H, 6.39; N, 4.64.

[1-N-(6-deoxy-5-O-acetyl-1,2-O-isopropylidene-3-O-methyl- α -D-glucofuranos-6-yl)-3-N-6-deoxy-1,2-O-isopropylidene-3-O-methyl-α-D-glucofuranos-6-yl]-1,3-benzimidazol-2-one (5).

This compound was obtained as white crystals, mp 156–158°C, $[\alpha]_D^2$ ⁷–94.7° (c 0.6, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ_{glucose} 5.93 (d, 2H, J_{1.2} = 3.6 Hz, H-1), 5.25, 4.20 (2m, 2H, J_{5.6a} = 3.1 Hz, J_{5.6b} = 5.6 Hz, H-5), 4.51, 4.50 (2d, 2H, J_{1.2} = 3.6 Hz, J_{2,3} = 0.0 Hz, H-2), 4.42 (m, 2H, H-6b), 4.40, 4.25 (2dd, 2H, J_{6a,6b}= 12.0 Hz, H-6a), 4.16, 3.91 (2dd, 2H, J_{4,5} = 8.6 Hz, H-4), 3.81, 3.65 (2d, 2H, J_{3.4} = 3.0 Hz, H-3), 3.45, 3.24 (2s, 6H, OCH₃), 1.95 (s, 3H, COCH₃), 1.45-1.15 (4s, 12H, CH_{3it9}), $\delta_{\text{benzimidazolone}}$ 7.25–7.00 (m, 4H, H_{arom}); ¹³C NMR (75 MHz, CDCl₃); δ_{glucose} 170.1 (COCH₃), 111.9 (C_{iso}), 105.6, 105.4 (C-1), 82.1, 81.7 (C-2), 82.8 (C-3), 80.4, 78.7 (C-4), 69.2, 68.9 (C-5), 58.5, 58.3 (OCH₃), 45.9, 42.0 (C-6), 26.9, 26.8, 26.7, 26.4 (CH_{31so}), 21.0 (COCH₃), $\delta_{\text{benzimidazolone}}$ 156.9 (CO), 130.1, 130.0 (C-5, C-6), 129.8, 129.6 (C-8, C-9), 108.8 (C-4, C-7); EIMS $[M]^+$ m/z 608.

Anal. Calcd for C₂₉H₄₀N₂O₁₂ (608); C, 57.23; H, 6.57; N, 4.60. Found: C, 57.05; H, 6.55; N, 4.62.

General procedure for the deprotection of 3 and 5.

The protected glucosidic derivative (50 mmol) was added to a stirred solution of 9:1 CF₃COOH-H₂O (200 mL) at 20°C. After 30 min., the reaction media was concentrated to dryness under reduced pressure. The crude product was purified by column chromatography using a hexane-acetone gradient to give 4 and 6 in 96 and 81% yield, respectively.

1,5-N,N'-bis-(6-deoxy-D-glucopyranos-6-yl)-benzodiazepin-2,4-dione (4).

This compound was obtained as white crystals, mp 94-96°C, $[\alpha]_D^{27}$ 37.7-42.9° (c 0.6, MeOH). ¹³C NMR (300 MHz, DMSO-d⁶): δ_{alucose} 96.7 (C-1β), 92.1, 91.9 (C-1α), 76.1-67.7 (C-2, C-3, C-4, C-5), 52.3, 49.6 (C-6), δ_{benzodiazepine} 164.9, 164.6 (C-2, C-4), 136.9, 136.6 (C-10, C-11), 126.2 (C-8), 125.2 (C-7), 124.9, 124.4 (C-6, C-9), 44.0 (C-3). Anal. Calcd for C₂₁H₂₈N₂O₁₁ (484): C, 52.06; H, 5.82; N, 5.78. Found: C, 51.94; H, 5.79; N, 5.87.

N,N'-bis-(6-deoxy-3-O-methyl-D-glucopyranos-6-yl)-benzimidazolone (6).

This compound was obtained as white crystals (α /β, 4:3), mp 124-126°C, [α]_D²⁷ 48.6-50.2° (c 0.6, MeOH); ¹³C NMR (75 MHz, DMSO-d⁶): δ_{είμεσες} 96.6 (C-1β), 92.1 (C-1α), 85.8 (C-3β), 82.7 (C-3α), 74.1-69.5 (C-2, C-4, C-5), 59.9 (OCH₃), 42.7 (C-6),), $\delta_{\text{benzimidazolone}}$ 153.8 (C-2), 129.6 (C-8, C-9), 120.7 (C-5, C-6), 108.7, 108.4 (C-4, C-7). Anal. Calcd for C₂₀H₂₈N₂O₁₁ (472): C, 50.8; H, 5.97; N, 5.93. Found: C, 50.5; H, 5.92; N, 5.96.

Acknowledgments

This work was supported by "Ministere Marocain de l'Enseignement Superieur".

References

(1) T. Blair and A. Webb, : J. Med. Chem., 20, 1206 (1977).

- (2) L. Sternbach : Prog. Drug Res., 22, 229 (1978).
- (3) J. C. Gaignault and L. Nedelec : L'Actualite Chimique, 17 (1983).
- (4) M. G. Bock, R. M. Dipardo, B. E. Evans, K. E. Rittle, W. L. Whitter, V. M. Garsky, K. F. Gilbert, J. L. Leighton, K. L.

Carson, E. C. Mellin, D. F. Veber, R. S. L. Chang, V. J. Lotti, S. B. Freedman, A. J. Smith, S. Patel, P. S. Anderson and R. M. Freidinger : J. Med. Chem., 36, 4276 (1993).

(5) R. R. Webb, P. L. Barker, M. Baier, M. E. Reynolds, K. D. Robarge, B. K. Blackburn, M. H. Tischler and K. J. Weese: Tetrahedron Lett., 35, 2113 (1994).

(6) B. K. Blackburn, A. Lee, M. Baier, B. Kohl, A. G. Olivero, R. Matamoros, K. D. Robarge and R. S. McDowell: J. Med. Chem., 40, 717 (1997).

- (7) A. Zellou, Y. Cherrah, M. Hassar and E. M. Essassi: Ann. Pharm. Fr., 56, 169 (1998).
- (8) A. Zellou, Y. Cherrah, M. Hassar and E. M. Essassi: Ann. Pharm. Fr., 56, 175 (1998).
- (9) D. Bouhlal, P. Gode, G. Goethals, M. Massoui, P. Villa and P. Martin : Heterocycles, 55, 303 (2001).
- (10) D. Bouhlal, P. Gode, G. Goethals, M. Massoui, P. Villa and P. Martin: Carbohydr. Res., 329, 207 (2000).
- (11) E. M. Essassi, A. Lamkaddem and R. Zniber : Bull. Soc. Chim. Belg., 100, 277 (1991).
- (12) M. A. Philips : J. Chem.Soc., 172, 2393 (1928).
- (13) R. L. Shriner and P. G. Boermans: J. Am. Chem. Soc., 66, 1810 (1944).
- (14) P. Y. Goueth, G. Ronco and P. Villa : J. Carbohydr. Chem., 13, 679 (1994).
- (15) J. E. Christensen and L. Goodman: Carbohydr. Res., 7, 510 (1968).
- (16) G. Laban, G. W. Günther, H. G. Kazmirowski, M. Menzer, K. Czernotsky, R. Müller and G. Moller, DDR Patent 272841 (1990).
- (17) R. I. Fryer, J. V. Earley and L. H Sternbach : J. Org. Chem, 3798 (1967).
- (18) S. J. Fouchet, F. Fabis, P. Bovy, P. Ochesenbein and S. Rault: Heterocycles, 51, 1257 (1999).
- (19) B. Lakhrissi, Ph. D. Dissertation, University IBN Tofaïl, Kenitra, Marocco (2003).

Received on September 18, 2004